Name:			

Data Representation, Logic, Huffman Coding, Binary Numbers

DU ::1:20pm Monday Nov. 28 at the beginning of classP ease staple all sheets together BEFORE class.

<u>Goal:</u> The purpose of this assignment is to get a little practice with binary numbers, think about representing data digitally, and review basic logic as the foundation of how computers compute.

Exercises:

Binar	v Nu	mbers

- 1 Convert 10 base 10 to base 2. _____
- 2 Convert 16 base 10 to base 2.
- 3 Convert 32 base 10 to base 2.
- 4 Convert 217 base 10 to base 2.
- 5 Convert RGB color (128, 0, 255) to base 2. (_____, _____)
- 6 Add 1101011 base 2 to 1011100 base 2, SHOW YOUR WORK.
- 7 Add 1011 base 2 to 110 base 2. SHOW YOUR WORK.

1101011 1011 +1011100 +110

What letters does this binary (base 2) data correspond to assuming it is in ASCII? 01001010, 01100001, 11110111, 00110000 = ____, ____, ____,

ASCII	0 0 0	0 0 0	0 0 1 0	0 0 1 1	0 1 0 0	0 1 0 1	0 1 1 0	0 1 1	1 0 0 0	1 0 0	1 0 1 0	1 0 1	1 0 0	1 0 1	1 1 1 0	1 1 1
0000	N _U	s _H	s _x	Ex	E _T	Eα	А _К	B _L	B _S	нт	L _F	Y _T	F _F	C _R	s _o	s _I
0001	D _L	D ₁	D ₂	D ₃	D ₄	NK	s _Y	\mathbf{E}_{Σ}	c _N	EM	s _B	E _C	Fs	G _s	R _S	u _s
0010		!	"	#	\$	%	&	1	()	*	+	,	-		/
0011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0100	@	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
0101	Р	Q	R	S	Т	U	V	W	Х	Y	Z	[\]	^	_
0110	_	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0
0111	р	q	r	ន	t	u	V	W	x	У	Z	{		}	~	D _T
1000	80	⁸ 1	82	83	I _N	N _L	ss	E _s	Н _S	Н	Y _s	P _D	P _V	R _I	s ₂	s ₃
1001	D _C	P ₁	Pz	s _E	c _c	ММ	s _P	E _P	α ₈	a _a	Ω _A	c _s	s _T	os	P _M	A _P
1010	^A o	i	¢	£	9	¥		S	••	©	o"	«	¬	-	R	_
1011	0	±	2	3	-	μ	¶	٠	ı	1	0	>>	1/4	1/z	3/4	خ
1100	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ϊ
1101	Ð	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	β
1110	à	á	â	ã	ä	å	æ	Ç	è	é	ê	ë	ì	í	î	ï
1111	ð	ñ	ò	ó	ô	õ	ö	÷	Ø	ù	ú	û	ü	ý	Þ	ÿ

Logic

9 Complete the following truth tables.

(a) NOT (p OR q)

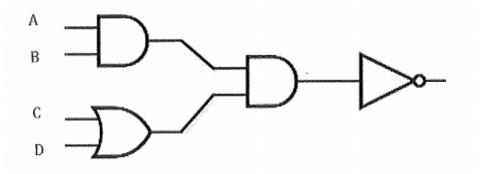
	p	q	p OR q	NOT $(p \text{ OR } q)$
ſ	1	1		
١	1	0		
١	0	1		
	0	0		

(b) p AND (NOT q)

p	q	NOT q	p AND (NOT q)
1	1		
1	0		
0	1		
0	0		

(c) p AND q AND r

p	q	r	p AND q	(p AND q) AND r
1	1	1		
1	0	1		
0	1	1		
0	0	1		
1	1	0		
1	0	0		
0	1	0		
0	0	0		


10 Using the 3 basic logic gates shown here, draw logic diagrams for the following logical statements.

- D-		→ >~
AND	OR	NOT

a NOT (P OR Q)

b (A OR B) AND (NOT C)

11 Write the logical statement that corresponds to the following logic diagram.

Name:		
00	Cod	ding (Please attach a separate sheet of paper for the Huffman trees.)
12		
	a	Generate a binary Huffman tree from the following letter frequencies for the word <i>bananarama</i> .
		letter b a n r m frequency 1 5 2 1 1
	b	Using the binary Huffman tree you created for (a), give the binary Huffman encoding for the letter sequence <i>barn</i> .
13	a	Generate a binary Huffman tree from the letter frequencies in the tongue twister: <i>She sells sea shells by the seashore</i> . Do not include the space character in your tree.
	b	Using the binary Huffman tree you created for (a), give the binary Huffman encoding for the letter sequence <i>share</i> .
14 C	reate	e the Huffman tree that goes with the following frequency table.

letter	с	s	r	t	е
frequency	1	2	3	4	7